
Out of the Matrix: Utilizing Data Simulations for Public Health Research

S. J. Robbins1, K. Roper2, N. Kale2, A. Mangino1

1Department of Biostatistics, 2Department of Family Medicine

College of Public Health, University of Kentucky, Lexington, KY 

(suggested font size 36)

The goal of this project was to simulate the expected responses from 

the Society of Teachers of Family Medicine's (STFM) CAFM 

Educational Research Alliance (CERA) annual survey for 2023. [8]

The motivation behind this simulation was to expedite coding and 

analyses due to 90 days of research exclusivity before data became 

publicly available. 

General membership questionnaires were provided and included 

demographic variables such as age, race, gender, and regional 

location.

The survey module (developed by Biostat CIRCL) included categorical 

response options, and included questions pertaining to trust, 

communication, practice and education after the Dobbs vs. Jackson 

ruling.

Continuous variables were simulated randomly from a normal 

distribution with the means and standard deviations from previous year 

estimates. Categorical variables were randomly simulated based on the 

number of categories and the estimate proportions in each group. 

Estimated proportions for the new survey module are assumed to be 

random.

Comparisons between the simulated data and the “real” data are seen 

in the results section. Information on the actual data is limited due to 

forthcoming publication.

Simulations were performed in R version 4.2.1.

Simulations mirror real-world scenarios or conditions from the patterns 

of data.[1]

Simulation is a computation tool for many tasks, such as examining 

random variables, independence, discrete and continuous distributions, 

confidence intervals, hypothesis testing, and efficient estimators. [1,2]

Common statistical softwares that are utilized across public health 

systems, such as R and SAS, have the capability of performing data 

simulations. [3,4]

Despite the benefit of simulation, it is often underutilized by public 

health researchers. [5,6,7]

In this motivating example, practical applications of simulations for 

public health analyses are illustrated using simulated data by 

biostatisticians in the Biostat CIRCL. The goal is to demonstrate the 

ease and convenience of data simulations for public health research.  
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The following figure aims to demonstrate the workflow in creating a 

simulated dataset from known and unknown estimates. Estimates were 

identified from literature from three sources. [9,10,11]
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For this case study, previous literature suggested that the average response rate 

was 20% for the 5000 potential responses. 1000 subjects were selected.

Categorical and continuous estimates were derived from demographic table 

results. Unknown variables represent the 10 new questions for this project. 

Observations were drawn from previous proportion and means from 

demographic data. New variables were drawn at random.
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RESULTS

Variable Simulated Data

N = 1000

2023 CERA Data

N = 1198

Age 

44.35 (10.84) 48.2 (12.2)
Gender

Male 395 (39.5%) 427 (35.6%)

Female 605 (60.5%) 750 (62.6%)

Race

White 832 (83.2%) 902 (75.3%)
Black or 

African-American
32 (3.2%) 57 (4.8%)

Asian 89 (8.9%) 111 (9.3%)

Region

1 58 (5.8%) 76 (6.3%)
2 132 (13.2%) 134 (11.2%)
3 186 (18.6%) 204 (17.0%)

4 33 (3.3%) 42 (3.5%)
5 180 (18.0%) 229 (19.1%)
6 61 (6.1%) 86 (7.2%)
7 91 (9.1%) 139 (11.6%)
8 102 (10.2%) 106 (8.8%)

9 157 (15.7%) 182 (15.2%)

Table 1. Results support simulation data’s potential to mimic real-world data 

when variables are simulated from parameter estimates. 
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